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Network constraints on the mixing patterns of binary node metadata

Matteo Cinelli ,1,2 Leto Peel ,3,4 Antonio Iovanella ,5 and Jean-Charles Delvenne6,7

1Ca’ Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, 30172 Mestre (VE), Italy
2Applico Lab, CNR-ISC, 00185 Rome, Italy

3Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands
4Department of Data Analytics and Digitalisation, School of Business and Economics, Maastricht University, Maastricht, The Netherlands

5University of Rome “Tor Vergata”, Via del Politecnico 1, Rome, Italy
6ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium

7CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium

(Received 22 April 2020; accepted 7 December 2020; published 23 December 2020)

We consider the network constraints on the bounds of the assortativity coefficient, which aims to quantify
the tendency of nodes with the same attribute values to be connected. The assortativity coefficient can be
considered as the Pearson’s correlation coefficient of node metadata values across network edges and lies in
the interval [−1, 1]. However, properties of the network, such as degree distribution and the distribution of node
metadata values, place constraints upon the attainable values of the assortativity coefficient. This is important
as a particular value of assortativity may say as much about the network topology as about how the metadata
are distributed over the network—a fact often overlooked in literature where the interpretation tends to focus
simply on the propensity of similar nodes to link to each other, without any regard on the constraints posed by
the topology. In this paper we quantify the effect that the topology has on the assortativity coefficient in the case
of binary node metadata. Specifically, we look at the effect that the degree distribution, or the full topology, and
the proportion of each metadata value has on the extremal values of the assortativity coefficient. We provide the
means for obtaining bounds on the extremal values of assortativity for different settings and demonstrate that
under certain conditions the maximum and minimum values of assortativity are severely limited, which may
present issues in interpretation when these bounds are not considered.
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I. INTRODUCTION

Assortative mixing is the tendency of nodes with similar
attribute values (also referred to as node metadata) to be
connected to each other in a network. For example, in a
human social network, where nodes are people and edges
are interactions between them, node metadata might include
the ages or genders of those people. Newman’s assortativity
coefficient r [1] was proposed as a means to quantify the
level of assortative mixing in a network with respect to a par-
ticular piece of node metadata. This assortativity coefficient
can be considered as the Pearson’s correlation coefficient of
node metadata values across edges. Just as correlation plays
an important role in identifying relationships between pairs
of variables, assortativity plays a fundamental role in under-
standing how a network is organized with respect to a given
attribute of the nodes. However, there are issues that may arise
when interpreting assortativity values as simply a measure of
propensity of adjacent nodes to have similar metadata values.
Here we consider one of these issues, specifically that the
properties of the network (irrespective of how the metadata
values are assigned to nodes) and the properties of the node
metadata (irrespective of how the nodes are connected) can
each influence the range of attainable assortativity values. A
trivial illustrative example is the following: suppose we know
that an undirected network is connected and the node metadata

take value 1 for some nodes and 0 for the others. Then we
know that assortativity r = +1 is unattainable because there
will be at least one edge with metadata values (0,1). If the
graph is not bipartite, we know that assortativity r = −1 is
unattainable because there will be at least one edge with meta-
data values (0,0) or (1,1). As a consequence, the assortativity
coefficient conflates information of the network topology with
how the metadata values are distributed over the network.

Pearson’s correlation coefficient is used to measure the
association between two variables x and y (which do not
typically come from a network). Each pair (xt , yt ) is assumed
to be sampled from the same joint probability distribution,
independent of any other pair (xt ′ , yt ′ ), where t ′ �= t . We apply
Pearson’s correlation coefficient to calculate assortativity by
treating the metadata (ci = xt , c j = yt ) of two nodes, i and
j, connected by an edge t = (i, j) as a sample (xt , yt ). Since
assortativity is an application of Pearson’s correlation coeffi-
cient it inherits the same potential issue of a reduced interval.
Even when x and y are identically distributed, the underlying
network structure can also limit the attainable values of assor-
tativity, in that it limits the way pairs (xt , yt ) can be formed.

Each sample pair (xt , yt ) is assumed to be sampled from the
same joint probability distribution, independent of any other
pair (xt ′ , yt ′ ), where t ′ �= t . We apply Pearson’s correlation
coefficient to calculate assortativity by treating the metadata
ci = xt , c j = yt of two nodes, i and j, connected by an edge
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FIG. 1. Assortativity as correlation in a network. (a) For the
correlation of two binary variables, x and y, we assume each row
corresponds to a draw from a simple joint distribution P(x, y). For
example, each row is a person, x indicates gender {male, female}
and y indicates if they wear glasses {yes, no}. (b) For assortativity we
just have one binary variable c (e.g., gender) and pairs of variables
connected by an edge in the network, which for illustrative purposes
we can consider directed from left to right. (c) Now each node (and
therefore its gender) will appear in as many rows as it has edges, so
we should no longer consider these to be samples from the same
bivariate distribution P(x, y) because it does not account for the
network structure, i.e., a node cannot be female in one interaction
and male in another interaction. To account for network structure,
we instead consider each pair as a sample from a distribution over
node pairs in the adjacency matrix. Changing the model in this way
does not change the value of the assortativity coefficient, but it does
change range of attainable values due to the added constraints of the
network structure.

t = (i, j) as a sample (xt , yt ). A known, but often overlooked,
issue is that the range of Pearson’s correlation coefficient
can be smaller than the usual reference interval [−1, 1]. This
reduced interval occurs, for instance, when the marginal dis-
tributions of x and y are not equal (aside from differences in
scale and location) [2,3].

Since assortativity is an application of Pearson’s correla-
tion coefficient it inherits the same potential issue of a reduced
interval. Even when x and y are identically distributed, the un-
derlying network structure can also limit the attainable values
of assortativity, as the network structure limits the way pairs
(xt , yt ) can be formed. Figure 1 shows an example, illustrating
that the presence of a (directed) network limits the possible
metadata pairs we may observe. For instance, if node i is
incident upon ki edges, then node i’s metadata value ci appears
in all ki pairs that represent its edges. This dependence on
the degree sequence further limits the bounds of attainable
assortativity, beyond simply considering the proportions of the
metadata values.

Here we focus on calculating the bounds of assortativity in
the special case in which the graph is undirected [i.e., edge
(i, j) can equivalently be written as ( j, i)] and unweighted,
without any self-loops or multiedges, and the node metadata
are restricted to binary values, e.g., gender of actors in social

networks. This setting is relevant, for example, when study-
ing important phenomena such as gender homophily [4] and
related perception biases in social networks [5,6]. We provide
methods to calculate bounds on the attainable range of assor-
tativity under the assumption that specific properties of the
network are fixed. We focus on two types of properties: those
relating to the network structure (specific degree sequence or
specific graph topology) and those relating to the node meta-
data (proportion of nodes per category or specific assignment
of nodes to categories). Considering all possible combinations
of these network and metadata properties provides us with
three different spaces of configurations (omitting the fourth
combination as it corresponds to just the single network con-
figuration that we observe):

(1) the metadata-graph space (mgs)—the ensemble of
configurations with a given degree sequence and proportion
of metadata values;

(2) the graph space (gs)—the ensemble of configurations
with a given degree sequence and specific node metadata
assignment;

(3) the metadata space (ms)—the ensemble of configu-
rations with a specific topology and proportion of metadata
values.

In the metadata-graph space the range of assortativity can
be explored by computing the assortativity coefficient over
the set of all possible graphs with the observed degree se-
quence (the graph space) combined with set of all possible
permutations of the metadata vector (the metadata space), i.e.,
a vector c in which each entry ci represents the metadata
value of node i ∈ {1, . . . , n} in the network. For this space we
present combinatorial bounds on the largest possible range of
attainable assortativity values since it contains both the graph
space and the metadata space. Thus, bounding assortativity in
the metadata-graph space means bounding assortativity with
respect to all the possible values it can assume within the
other spaces. Similarly for the graph space [7] we present
combinatorial bounds for the range of assortativity r for all
possible configurations of the observed degree sequence, but
this time with the metadata vector fixed. Finally, the range of
assortativity in the metadata space is harder to bound analyti-
cally, being strictly dependent on the topology of the network.
Instead we explore the range via a complete enumeration
(when computationally feasible [8]) of all possible permuta-
tions of the metadata vector. For larger graphs we resort to
heuristic methods.

Figure 2(a) illustrates qualitatively the relationship of the
bounds in each of these spaces. Both the metadata space and
the graph space are subsets of the metadata-graph space. In
what follows, we will demonstrate that the relationship be-
tween the bounds on the metadata-graph space and the bounds
on the graph space is relatively straightforward. However,
the relationship between the graph space and the metadata
space in terms of assortativity is somewhat more nuanced.
Depending on the topology and the node metadata vector, the
assortativity range in the graph space can be either narrower
or wider than the metadata space.

Using both combinatorial and empirical methods, we
demonstrate that these bounds can be substantially far from
−1 and 1 in each of these three spaces. We reinforce these
results by demonstrating that for some real-world networks
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FIG. 2. (a) Graphical representation of the assortativity range in
the metadata-graph space, graph space, and metadata space. The
assortativity range in the graph space is represented differently as
it may be either smaller or larger than the assortativity range in
the metadata space. (b) Graphical representation of block diagrams
related to two different types of partition. In the case of a bipartitelike
configurations most of the links fall between different partitions (i.e.,
connect nodes with different metadata values) while in the case of a
bisectedlike configurations most of the links fall within each of the
partitions (i.e., connect nodes with the same metadata values).

the full reference range of assortativity is not attainable in
any of these three spaces. Such evidence may provide some
insights about the interpretation of common configurations as
well as boundary ones that, without such knowledge, would be
misinterpreted by being considered less significant than they
are.

II. ASSORTATIVE MIXING OF BINARY METADATA

The formula for Newman’s assortativity r for binary node
metadata is equivalent to Pearson’s correlation coefficient for
binary variables, also known as the φ coefficient [9]. Pearson’s
correlation coefficient is a fundamental statistic used to iden-
tify linear relationships between variables. However, despite
the widespread use of Pearson’s correlation coefficient, it is
not without its limitations, e.g., the ambiguity of interpret-
ing specific coefficient values [10]. Given the relationship
between Newman’s assortativity and Pearson’s correlation
coefficient it is unsurprising that the assortativity coefficient
also suffers from similar issues of interpretability [11]. Here
we consider a further issue that affects the interpretation
of assortativity—the extremal values r ∈ {−1, 1} are often

unattainable. This particular issue is one that is inherited, in
part, from the φ coefficient [12]. However, in the case of
network metadata, the effect is exacerbated by the dependency
on the network structure.

A. The φ coefficient

We begin by clarifying the relationship between the φ coef-
ficient and Newman’s assortativity r. Since φ is a correlation
coefficient, we can write the φ coefficient of binary variables
x and y as

φ = E[x, y] − E[x]E[y]

σxσy
, (1)

where σx is the standard deviation of x. For binary variables,
the sample φ coefficient is based on the 2 × 2 contingency
table:

P(x, y) =
y = 0 y = 1

x = 0 e00 e01 a0

x = 1 e10 e11 a1

b0 b1

where

ai =
∑

j

ei j, b j =
∑

i

ei j, (2)

and ei j is the proportion of pairs for which x = i and y = j,
and

∑
i j ei j = 1. The φ coefficient [9] is stated as

φ = e11 − a1b1√
a1a0b1b0

. (3)

Treating ei j as the joint probability distribution P(x, y), the
φ coefficient tells us the correlation of the variables x and y
sampled from this distribution. In this setting the range of φ is
bounded by the marginals [13] (see Appendix A 1),

φmin = −
√

a0b0

a1b1
, φmax =

√
a0b1

a1b0
. (4)

B. Assortativity for binary node metadata

Newman’s assortativity for binary node metadata is cal-
culated according to the same formula as Eq. (3). However,
since we are considering the correlation of node metadata
across network edges we no longer have two variables x and
y, we have a single binary variable c representing the node
metadata. In undirected networks, ei j = e ji and represents
half the proportion of edges in the network that connect nodes
with type i to nodes with type j (or the proportion of edges if
i = j) and ai = bi, i.e.,

P(ci, c j ) =
ci = 0 c j = 1

ci = 0 e00 e01 a0

c j = 1 e01 e11 a1

a0 a1

where

ai =
∑

j

ei j =
∑

i

ei j, (5)

To make the connection between φ and Newman’s assorta-
tivity explicit, first note that the numerator of Eq. (3) can also
be written as e00 − a2

0 since e11 − a2
1 = e00 − a2

0. Now we can
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simplify the denominator of Eq. (3),√
a1a0b1b0 = a1a0 = a1(1 − a1) = a1 − a2

1.

Then by making these substitutions and summing over
categories (since we do not assume that a0 = a1) we recover
Newman’s assortativity [1]:

r =
∑

i eii − a2
i

1 −∑
i a2

i

. (6)

The fact that the minimum value of assortativity rmin may
be greater than −1 was previously indicated in [1] where
a relatively conservative bound was derived by inspecting
Eq. (6) and considering that the minimum occurs when all
edges connect nodes with different metadata values, such that∑

i eii = 0. In this case we see that the minimum assortativity
is

rmin = −∑i a2
i

1 −∑
i a2

i

. (7)

However, this bound is not particularly informative in the
case of binary metadata since it will always yield a value
� − 1. The reason is because it necessitates that a configu-
ration where

∑
i eii = 0 is possible. When the marginals of

the metadata values are imbalanced, such that a0 �= a1, then
it is not possible for both e00 = e11 = 0 to equal zero, since
e00 − a2

0 = e11 − a2
1. A more informative bound is that of the

φ coefficient [13],

φmin = −a0

a1
� −1, (8)

which we obtain from Eq. (4) when ai = bi and assuming
that a0 � a1. When the marginals of the metadata values are
balanced a0 = a1 the metadata can potentially form a bipartite
partition of the network such that the bound given in Eq. (8)
is saturated. However, we will show that, depending on the
space of configurations considered, it is not always possible
to arrange the metadata to form a bipartite split. In these
cases r = −1 will be unattainable. Regarding the maximum
assortativity, we see in Eq. (4) that rmax = φmax = 1 for an
undirected network.

These bounds, however, only take into account the
marginals a0 and a1, but as we see in Fig. 1 the underlying
network presents extra constraints, e.g., we might know that
the network has a specific degree sequence. The model for cor-
relation, in which we sample pairs from the joint distribution
P(x, y) of Eq. (2), does not allow us to incorporate information
about the network structure. This discrepancy suggests that
this simple model is unsuitable and that modeling assortativity
is a little more nuanced.

In order to include this information, we consider the model
of assortativity originally proposed by Newman [1], in which
we sample from a joint distribution over node pairs (i, j) in
the adjacency matrix (such that existing edges are sampled
uniformly at random) and look at the metadata values of the
nodes linked by the edge. The probability of observing pairs of
metadata values in this way is our joint distribution P(ci, c j ).
This model of assortativity naturally incorporates network
properties such as the degree distribution. Ensuring a specific
degree sequence (in expectation) amounts to fixing the row

and column sums of the distribution over the adjacency ma-
trix. Note that assuming this model of assortativity does not
change how we calculate the assortativity coefficient since we
aggregate counts by node metadata values to produce a contin-
gency table [Eq. (2)] just as we would when calculating the φ

coefficient. However, the additional structure that this model
of assortativity affords limits the possible joint distributions
P(ci, c j ) that we may consider and in turn further limits the
attainable values of assortativity.

In what follows, it will become clearer to describe assor-
tativity in terms of edge counts, rather than proportion of
edges. To do so we consider that the m edges are divided
into three subsets such that m = m11 + m10 + m00. Then we
make the simple substitution mi j = (2 − δi j )ei jm, where δ is
the Kronecker delta. Consequently the assortativity of binary
node metadata can be written as

r = (m00 + m11)m − (
m00 + m10

2

)2 − (
m11 + m10

2

)2

m2 − (
m00 + m10

2

)2 − (
m11 + m10

2

)2 , (9)

which can be simplified by first eliminating m10 through the
substitution m10 = m − m00 − m11,

r = 2(m00 + m11)m − m2 − (m00 − m11)2

m2 − (m00 − m11)2
, (10)

and rearranging as

r = 1 − 2m10m

m2 − (m00 − m11)2
. (11)

The bounds on assortativity are directly related to the
bounds on the edge counts. Specifically, we can consider two
types of bipartition depending whether we wish to minimize
or maximize the assortativity. Figure 2(b) illustrates this rela-
tionship. Maximizing the assortativity corresponds to forming
a minimum cut bisection of the network such that the major-
ity of the edges connect nodes of the same type [Fig. 2(b)
(left)]. The maximum value r = 1 occurs when edges only
occur between nodes with the same metadata values, i.e.,
m00 + m11 = m, and implies that the network is made up of
multiple connected components, each containing only nodes
with the same metadata value. Minimizing the assortativity
corresponds to finding a bipartite (or near bipartite) partition
such that all (or most) of the edges connect a node i that
has metadata ci = 0 to a node j that has metadata c j = 1
[Fig. 2(b) (right)]. The minimum of r = −1 occurs if and only
if m00 + m11 = 0.

III. BOUNDS ON THE EDGE COUNTS USING
THE DEGREE SEQUENCE

There are instances in which the bounds for assortativity,
−1 � r � 1, can be attained. However, this is often not the
case when certain properties of the network are fixed. In
particular, the degree sequence, a specific set of edges and
the way that node metadata values are assigned to specific
nodes, all play a role in limiting the range of attainable values
of assortativity.

Instrumental to exploring the effect of structural properties
on the bounds of assortativity is the dependence of assor-
tativity on the edge counts m11, m10, and m00, as shown in
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FIG. 3. Two different networks with the same degree sequence DG, one with balanced proportions of metadata values, as displayed in
(a), and the other with imbalanced proportions, as displayed in (c). The m11 links between pairs of nodes with metadata ci = 1 (in black)
are represented by solid lines, the m00 links between pairs of nodes with metadata ci = 0 (in white) are represented by dashed lines, and the
remaining m10 links are represented by dotted lines. In each case we partition the degree sequence DG into a head DH

G , containing the highest
degrees, and a tail DT

G, containing the lowest degrees, i.e., DG = DH
G (n1) ∪ DT

G(n0 ), as shown in (b) [or DG = DH
G (n0) ∪ DT

G(n1), as shown in
(d)]. Once we fix the degree sequence DG, the bounds depend only on the proportion of featured nodes n1 and n0. Consequently, when n1 = 5
[network in (a)] the bounds are mu

11 = 10, mu
10 = 20, mu

00 = 10, ml
11 = 0, ml

10 = 4, and ml
00 = 0. When n1 = 3 [network in (c)] the bounds are

mu
11 = 3, mu

10 = 18, mu
00 = 17, ml

11 = 0, ml
10 = 1, and ml

00 = 1.

Eq. (11). To demonstrate, we consider the largest of the afore-
mentioned ensembles of graphs, the metadata-graph space
(mgs), in which we preserve only the degree sequence of
the observed graph and the relative proportions of observed
metadata values. Within this space we can state bounds on the
possible edge counts m11, m10, and m00 [14,15]. We denote the
upper bounds with a superscript u (e.g., mu

11) and the lower
bounds with a superscript l (e.g., ml

11).
In a graph with n nodes that have a binary metadata as-

signment, we have n0 nodes with metadata value ci = 0 and
n1 nodes with metadata value ci = 1. We define bounds on
the edge counts by partitioning the ordered degree sequence
DG and using this partition of the degree sequence to consider
the maximum and minimum edge counts that it imposes. For
example, to determine the upper bound of the number of edges
mu

11 that connect pairs of nodes with metadata value 1 we
should consider that the maximum value of m11, given n0

and n1, occurs when n1 nodes are arranged into a complete
subgraph. If DG does not allow such a configuration, then the
maximum value of m11 occurs when n1 nodes with the highest
degree only connect to each other and not to any nodes with
metadata ci = 0. Therefore we partition the degree sequence
into a head DH

G (n1), comprised of the n1 highest degrees, and
a tail DT

G(n0), containing the n0 lowest degrees, such that
DG = DH

G (n1) ∪ DT
G(n0).

Figure 3 shows a simple example of such a partition of
the degree sequence with two different values of n1. The
maximum possible m11 in any network that has degree se-
quence DG and n1 has to be necessarily less than or equal to
the number of links contained in the subgraph with degree
sequence DH

G (n1) [when we consider DH
G (n1) the degree sum

of the n1 elements of the network is maximized] or to the

number of links contained in a clique of size n1. The same
reasoning is applicable when we consider m00, whose upper
bound can be computed by partitioning DG in a way such that
DG = DH

G (n0) ∪ DT
G(n1), as shown in Fig. 3(d). Following a

similar rationale of partitioning the ordered degree sequence,
it is possible to either maximize or minimize the degree sum of
the two groups thus obtaining specific upper and lower bounds
to the edge counts. Full details on the derivation of the upper
and lower bounds (mu

11, mu
10, mu

00) and (ml
11, ml

10 and ml
00) are

given in Appendix A 2.
The obtained bounds require only the degree sequence

and the proportion of metadata to be set and so are suitable
for the metadata-graph space. However, they can be trivially
extended to the graph space by considering the case of a fixed
partition of the degree sequence as explained in Appendix A 3.

IV. BOUNDS ON BINARY ASSORTATIVITY

We now discuss bounds on assortativity relative to the
limits imposed by the three spaces: the metadata-graph space
(mgs), the graph space (gs), and the metadata space (ms).
Throughout we will assume that 0 < n1 < n to ensure that
neither of the groups in the partition are empty.

A. Bounds for the metadata-graph space

The metadata-graph space contains all configurations of
graph structures and node metadata assignments that have a
specified degree sequence DG and given number of nodes of
each type {n0, n1}. The bounds on the edge counts described
in Sec. II depend only upon the specific degree sequence and
the number of nodes of each type. We can therefore use these
directly to define the bounds upon the metadata-graph space.
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FIG. 4. Assortativity as a function of the difference in edge counts m11 − m00, as computed from Eq. (11). (a) The assortativity function r
for different values of m10 as a proportion of m while the difference between m11 and m00, represented by � = m11 − m00, varies. We notice that
assortativity is maximized whenever m11 = m00. (b) The degree sequence displayed in Fig. 3 when n1 = 5. In this case we set m10 = ml

10 = 4,
which implies m − m10 = m11 + m00 = 16. Thus, we obtain the maximum value of assortativity when m11 = m00 = (m − ml

10 )/2, i.e., when
(m − ml

10 )/2 = 8.

1. Upper bound

The maximum value of rmgs, for connected networks, oc-
curs when as few edges as possible link nodes of different
types. Therefore we define our upper bound ru

mgs by set-
ting m10 = ml

10. The maximum value of assortativity r = 1
can only be attained if the graph can be partitioned into
disconnected components that contain only a single type of
node. This constraint implies that when the lower bound ml

10
is greater than zero, then the maximum possible value of
assortativity is less than 1. Setting m10 = ml

10 implies that
m11 + m00 = m − ml

10 and we can write r as

r = 1 − 2ml
10m

m2 − (m00 − m11)2
. (12)

We can substitute m00 = m − ml
10 − m11 into Eq. (12) and

write r as a function of m11,

r = 1 − 2ml
10m

m2 − (
m − ml

10 − 2m11
)2 . (13)

In order to obtain the value of m11 that maximizes r we can
solve the following equation:

∂r

∂m11
= 0, (14)

which gives us m11 = (m − ml
10)/2 and implies that m00 =

(m − ml
10)/2 = m11 and therefore

ru
mgs = 1 − 2ml

10

m
. (15)

Figure 4 graphically confirms that r is maximized when m00 =
m11 because assortativity, with fixed m10, is a concave function
of m11.

2. Lower bound

The minimum value of rmgs, for connected networks, oc-
curs when the partition of the node metadata forms a bipartite

split of the graph. When ml
11 + ml

00 > 0 for a given degree
sequence DG and group sizes n0 and n1 it means that a certain
number of intragroup links exist and that it is not possible to
form a bipartite partition Gn1,n0 of the graph. As introduced
in Sec. II, Newman provides the following lower bound to
assortativity [1]:

rmin = −
∑

i a2
i

1 −∑
i a2

i

. (16)

Such a lower bound assumes the existence of a bipartite
split of the nodes and that the sum of the proportion of intra-
partition links is zero, i.e.,

∑
i eii = 0. Written in terms of edge

counts for binary metadata we have m11 + m00 = 0, where
m10 = m (since m11 + m00 + m10 = m). By substituting these
quantities into Eq. (16) we obtain

rmin = − 2
(m10

2m

)2

1 − 2
(m10

2m

)2 = −1. (17)

Following Newman’s reasoning but this time accounting for
the bounds on the edge counts: m11 � ml

11 � 0, m00 � ml
00 �

0, and m10 � mu
10 � m, we obtain the lower bound rl

mgs by
considering a realization as close to a bipartite split of the
graph (i.e., that with the highest m10) as possible, which
presents us with two options. The first option consists of
setting m11 = ml

11 and m00 = ml
00, which implies m − ml

11 −
ml

00 = m10. Through a simple substitution of such quantities
we obtain

ml
ii case : rl

mgs = 1 − 2m
(
m − ml

00 − ml
11

)
m2 − (

ml
00 − ml

11

)2 . (18)

The second option is to use the upper bound of the edge
count m10 by setting m10 = mu

10. When m10 = mu
10, then m11 +

m00 = m − mu
10. For a fixed value of m10, binary assortativity

is a concave function and ml
00 can be different from ml

11. When
m11 + m00 > 0, the minimum assortativity can be obtained
when the absolute difference |�| = |m11 − m00| is maximized
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(as shown in Fig. 4). We then have two further options to
determine the lower bound. In the first case we set m10 = mu

10,
m11 = ml

11 and if mu
10 + ml

11 � m, then m00 = m − mu
10 − ml

11
which we refer to as the �min case. Thus

�min case : rl
mgs = 1 − 2mu

10m

m2 − (
m − mu

10 − 2ml
11

)2 . (19)

In the second case we set m10 = mu
10, m00 = ml

00 and if
mu

10 + ml
11 � m, then m11 = m − mu

10 − ml
00 which we refer

to as the �max case. Thus

�max case : rl
mgs = 1 − 2mu

10m

m2 − (
mu

10 + 2ml
00 − m

)2 . (20)

In summary, we have three possible cases for determining
the lower bound:

{m00, m11, m10} =

⎧⎪⎨
⎪⎩

ml
ii :

{
ml

00, ml
11, m − ml

11 − ml
00

}
,

�max :
{
m − mu

10 − ml
11, ml

11, mu
10

}
,

�max :
{
ml

00, m − mu
10 − ml

00, mu
10

}
,

(21)

which we can substitute into Eq. (9) to obtain a lower bound
rl

mgs on the minimum value of r.

B. Bounds for the graph space

Similar to the metadata-graph space, the graph space
considers all configurations of graph structures that have a
specified degree sequence. The difference is that in the graph
space the assignment of metadata values to nodes is fixed and
so the degree-metadata correlation is also fixed. We can bound
the assortativity of the graph space using the same rationale
as the metadata-graph space. In fact, we can use the same
equations given in the previous subsection by replacing the
bounds on the edge counts for the metadata-graph space with
those of the graph space, which are given in Appendix A 3.

The range of assortativity in the metadata-graph space is at
least as large as the range in the graph space since the former
has an extra degree of freedom by allowing all the possible
arrangements of the metadata over the network nodes. As
such, the following relations hold:

ru
gs � ru

mgs � rmax, (22)

rmin � rl
mgs � rl

gs. (23)

The difference in the assortativity bounds for the metadata-
graph space and the graph space vary according to n1. The
number of nodes n1 controls how many distinct metadata
assignments there can be per graph configuration. The ranges
are equal when n1 = {0, n}, because there can be only a single
metadata assignment for every graph configuration, and the
difference in the ranges is maximized when n1 = n/2.

C. Bounds for the metadata space

Unlike the metadata-graph space and the graph space, in
the metadata space we cannot provide any tighter theoretical
bound for assortativity using only the degree sequence. In-
deed, in order to obtain a tight bound in the metadata space
we may need to exploit higher order statistics, such as the

number of triangles or the diameter of the network. Therefore
we must resort to a complete enumeration, when feasible, or
to a heuristic algorithm, based on a Monte Carlo exploration
of the metadata space (one such algorithm is described in
Appendix A 4). As in the previous section, we can clearly
determine that the range of assortativity in the metadata-graph
space is at least as large as the metadata space, because for
each unique assignment of metadata values to node degrees,
the metadata-graph space contains all possible graph configu-
rations with the given degree sequence. Therefore,

r<max
ms � ru

mgs � rmax, (24)

rmin � rl
mgs � r>min

ms , (25)

where r<max
ms and the r>min

ms are the upper bound and the
lower bound to the metadata space computed algorithmically.
We cannot guarantee, however, any relationship between the
metadata space and the graph space since they are constrained
by different elements. The former is constrained by the topol-
ogy and by the proportion of metadata values while the latter
by the degree sequence and by the assignment of metadata
to specific nodes. Instead of a combinatorial bound in the
metadata space, we demonstrate the bounds empirically on
a synthetic network. Using the network in Fig. 3 (top left
network), we look at all the possible permutations of the
metadata in order to compute the distribution of assortativity
values.

Figure 5 shows the distribution of assortativity values over
a complete enumeration of metadata assignments for the net-
work in Fig. 3 (top left). The histogram on the left shows
the distribution for n1 = 5, while the one of the right shows
the distribution for n1 = 3. Here we can clearly observe the
minimum and maximum values of the assortativity coefficient
attainable in the metadata space.

V. EXPERIMENTS ON REAL NETWORKS

In this section we investigate assortative mixing for binary
metadata in real-world networks [16]. Examples of binary
metadata of network nodes can be found in a wide array
of contexts, including: the functional categories of proteins
in protein-protein interaction networks [8], the hydrophobic
and hydrophilic nature of proteins in protein contact networks
[17], and the use of a specific service in telecommunication
networks [8]. Here we will focus on another natural case study
on binary node metadata, which is gender assortativity in
social networks of animals [18] and humans [19]. The inves-
tigation of gender assortativity is interesting for a number of
practical reasons related to human behavior and the adoption
of specific habits [20–23]. Moreover, better understanding of
the mixing patterns and preferences in social networks plays
an important role in predicting missing metadata such as gen-
der [24].

Here we investigate gender assortativity in two colleges,
Smith and Wellesley, extracted from the Facebook 100 dataset
[25] (see Appendix A 6 for dataset description) containing
social network snapshots with a heavy-tailed distribution. Ad-
ditional analytical results for scale-free networks are given
in Appendix A 7. Smith displays a gender assortativity of
r = 0.02 that is positive but close to 0 (i.e., close to a random
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FIG. 5. Ranges of assortativity for the network shown in Fig. 3(a). The plot in (a) has n1 = 5 and the one in (b) has n1 = 3. The histograms
show the distribution of assortativity values in the metadata space (complete enumeration of all permutations of metadata assignments). The
dashed lines indicate the bounds rl

mgs and ru
mgs of the assortativity range in the metadata-graph space. The dotted lines indicate the bounds

rl
gs and ru

gs in the graph space. When n1 = 5 the values are rl
mgs = −1, rl

gs = −0.905, r>min
ms = −0.6, r<max

ms = 0.2, ru
gs = 0.5, ru

mgs = 0.6. When
n1 = 3 these values are rl

mgs = −0.905, rl
gs = −0.8, r>min

ms = −0.704, ru
gs = −0.3, r<max

ms = 0.2, ru
mgs = 0.9.

distribution of links relative to the node metadata), while in
Wellesley we see a value of r = 0.24 that should indicate a
distinctive pattern of assortativity by gender.

Figure 6 displays the assortativity bounds for the metadata-
graph and graph spaces for the Smith [Fig. 6(a)] and Wellesley
[Fig. 6(b)] social networks. To evaluate the metadata space,
Fig. 6 also shows histograms of assortativity values for 105

permutations of the binary metadata vector c for each net-
work and the extremal values obtained from minimizing and
maximizing the assortativity using an optimization heuris-
tic, described in Appendix A 4. We immediately observe
that the disassortativity of both networks is bounded away
from −1, in all three spaces, such that the network can-
not be very disassortative and that there are relatively few
configurations of the network and metadata that allow disas-
sortative mixing. This effect is partially due to the huge gender
imbalance as both colleges are female only and so there
are relatively few males (staff and graduate students) in the
network.

Comparing the ranges of assortativity in the metadata space
and graph space, we observe that r>min

ms � rl
gs and r<max

ms � ru
gs

for both these networks. So the metadata space allows more
disassortative mixing than the graph space does. However, we
should consider the latter with caution since r<max

ms is com-
puted via a heuristic (thus it is a lower bound to the actual
maximum) while ru

gs is an upper bound. Therefore, given the
fact that r<max

ms and ru
gs have very close values, it indicates a

very high similarity in terms of upper bound of assortativity
in graph and metadata spaces.

With regard to the metadata space, we see that for both
networks the observed assortativity value is higher than the
assortativity of random permutations. We can interpret such
a result as a test of statistical significance [26]. So even
though the assortativity is relatively low (particularly for the
Smith network), we can still conclude that the assortativity
is significantly higher than a random partition of the network
(p < 10−5).

In order to complement the previous analysis, we also con-
sider a smaller but much denser network, the Wolf dominance
network [27] (see Appendix A 6), over which we evaluate
gender assortativity. In this smaller network it is possible to
evaluate the metadata space via a complete enumeration of
the possible metadata permutations and so we can compute
the actual values of r>min

ms and r<max
ms to compare against the

combinatorial bounds of the graph space and metadata-graph
space.

Interestingly in this case, the upper bounds on assortativity
in all three spaces are very close to zero and in the meta-
data space it is not possible to observe positive assortativity.
Furthermore, the mean value of assortativity over the meta-
data space is not zero, as we can see from the histogram
centered at −0.06. This observation seems contrary to our
expectation that assortativity of random partitions should be
centered around zero. This result resembles that of Ref. [7]
in which it was observed that under certain conditions the
expected value of assortativity in the graph space is not
equal to zero. Here we make a similar observation that the
expected value of assortativity may be different from zero, in
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FIG. 6. Assortativity bounds for the colleges Smith (a) and Wellesley (b) of the largest connected component after eliminating nodes with
missing gender metadata. Smith college has n = 2625, m = 77 259, nfemale = n0 = 2596, nmale = n1 = 29. Smith has a gender assortativity
value r = 0.025 (solid line) with m11 = 25 and m10 = 1404. The upper bounds to gs and mgs for Smith college are not reported in the panel
and they are ru

gs = 0.976 and ru
mgs = 1. Wellesley college has n = 2689, m = 78 853, nfemales = n0 = 2653, nmales = n1 = 36. Wellesley has a

gender assortativity value r = 0.246 (solid line) with m11 = 122 and m10 = 729. The upper bounds to gs and mgs for Wellesley college are
not reported in the panel and they are ru

gs = 0.995 and ru
mgs = 1.

the metadata space. Therefore, following a similar argument,
we may conclude that in cases such as these an adjustment to
the expected value may be necessary.

VI. DISCUSSION

The assortativity coefficient r is generally assumed to
range between −1 and 1. In this paper we provide evidence
that this widely used measure is often bounded within a
much narrower range, given even partial knowledge of the
metadata distribution or the network topology. It is important
to be aware of these bounds when interpreting the values
of assortativity. For instance, consider the example of the
Wolf dominance network in Fig. 7. The observed value of
assortativity is r = −0.153. If we compare this value to the
full interval [−1, 1], we might conclude that the network is
mildly disassortative. However, we have established that all
networks sharing the same degree sequence (i.e., in the same
graph space) and the same proportion of male/female nodes
as the original network will display assortativities bounded by
the range −0.153 and 0.009. In this light we must conclude
that the observed metadata are remarkably disassortative, in
fact as disassortative as can be, given these constraints. Our
work can, in this way, be used as tool that allows us to explore
the significance of assortativity in a given network.

These findings will have impact on how we interpret as-
sortativity. For instance, in the study of the integration of
minorities over time or across different networks. Taking
into account the range of attainable values provides us with

a clearer view on mixing patterns between such groups. In
summary, the range of values attainable by the assortativity
coefficient can vary substantially depending on the constraints
imposed by the network structure and the distribution of node
metadata. Here we considered three particular settings:

(1) The metadata-graph space: the range of assortativity
values over the ensemble of configurations with a given degree
sequence DG and number of nodes of each type n0, n1. Here
we provide a combinatorial lower bound rl

mgs and a combina-
torial upper bound ru

mgs.
(2) The graph space: the range of assortativity values over

the ensemble of configurations with a given degree sequence
DG and a specific assignment of metadata to nodes. Here we
provide a combinatorial lower bound rl

gs and a combinatorial
upper bound ru

gs.
(3) The metadata space: the range of assortativity values

over the ensemble of permutations of the metadata values
(preserving the counts n0, n1) on the specific topology of an
observed graph. Here we propose the use of a heuristic to
estimate the upper bound r<max

ms and lower bound r>min
ms .

The choice of space should depend upon the specific prob-
lem at hand and relate to the specific assumptions we wish
to make about the graph structure and metadata assignment.
For instance, when investigating metadata such as gender in a
social network we might consider the metadata and popularity
of the nodes (i.e., their degrees) to be fixed and so the graph
space might be most appropriate. Alternatively, in a road
network in which the metadata indicates either the presence
or absence of road signals, occurrences of traffic jams, or the
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FIG. 7. Assortativity bounds for the Wolf dominance network
(n = 16, m = 111, nfemale = n0 = 7, nmale = n1 = 9). The network
has a gender assortativity value r = −0.153 (solid line) that occurs
in correspondence with m11 = 31 and m10 = 63. The dashed lines,
obtained with the combinatorial bounds, occur in correspondence
of rl

mgs = −0.263 and ru
mgs = 0.099. The dot-dashed lines occur

in correspondence of the values r>min
ms = −0.16 and r<max

ms = 0.009
which are obtained via complete enumeration. The bounds to the
graph space are represented by dotted lines at rl

gs = −0.153 and
ru

gs = 0.009.

locations of accident hotspots, we might want to consider the
metadata space as the structure of the graph is fixed.

Although we have focused on binary metadata, the issue
of attaining the extremal values {−1, 1} of assortativity is
still present for any categorical-valued metadata [28]. Taken
altogether we can conclude that these constraints present
questions about the interpretability of network assortativity,
especially when comparing across networks [4,25,29,30], as
also noted in the case of degree assortativity [31]. As a po-
tential solution we might consider normalizing assortativity
according to the bounds of the space most relevant to our
given problem. For instance, if we consider the degree and
metadata value of a node to be fixed, then an appropriate
normalization might be

rgs =
{ r

ru
gs

if r is positive,
r

rl
gs

otherwise.
(26)

Such a normalization has previously been suggested for re-
lated measures such as the φ coefficient and Cohen’s κ

[12,28]. It also follows the rationale that assortativity is a
normalized version of modularity Q (i.e., r = Q/Qmax [32]
where Qmax = 1 −∑

i a2
i ). Alternatively we may consider

comparing the observed assortativity with the distribution of
assortativity values in the relevant ensemble, e.g., using as-
sortativity as a test statistic in a one-sided hypothesis test

to assess statistical significance [26,33]. Additional investi-
gations could expand the research outlined in Appendix A 7
on the interplay between asymptotic properties of the degree
distribution and the attainable range of assortativity in the case
of categorical [14] and scalar [34] features. However, we leave
the exploration of these ideas for future work.

Another avenue for future work would be to consider how
a given ensemble constrains other network measures such
as Freeman’s segregation [35], which is limited by the edge
count m10 (see note in Appendix A 5), and the clustering
coefficient, which is closely related to assortativity of scalar
features such as degree [36].
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APPENDIX: METHODS

1. Bounds for the φ coefficient

The bounds for the φ coefficient depend on the marginals
a0, a1, b0, b1 of the contingency table in Eq. (2) [13]. We start
by deriving an alternative expression for the numerator of the
φ coefficient:

e11 − a1b1 = e11 − (e11 + e01)(e11 + e10)

= e11 − (
e2

11 + e11e01 + e11e10 + e01e10
)

= e11(1 − e11 − e01 − e10) − e01e10

= e11e00 − e01e10,

which gives us the alternative form for φ,

φ = e11e00 − e01e10√
a1a0b1a0

. (A1)

From Eq. (A1) we can easily see that the φ coefficient
is at its minimum when either e00 = 0 and/or e11 = 0. Here
we will assume that e00 � e11, so setting e00 = 0 means that
e01 = a0 and e10 = b0. Then

φmin = − e01e10√
a1a0b1a0

= −
√

a0b0

a1b1
. (A2)

Similarly for the maximum of φ, either e01 = 0 and/or
e01 = 0. So, if e01 = 0, then

φmax =
√

a0b1

a1b0
. (A3)

2. Bounding the edge counts in the metadata-graph space

Here we summarize the bounds introduced in [14]. Given a
degree sequence DG, by using the quantities n1 and n0 which
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identify the amount of nodes with features 1 and 0, respec-
tively, it is possible to define its head DH

G (n1) or DH
G (n0) and

its tail DT
G(n1) or DT

G(n0) such that DG = DH
G (n1) ∪ DT

G(n0) or
DG = DH

G (n0) ∪ DT
G(n1).

Considering these partitions, the first upper bound mu
11 is

based on the fact that, especially in sparse networks, large
cliques may be rare substructures. Therefore, using DG we
check whether G can actually contain a complete subgraph
of size n1 [i.e., if DH

G (n1) satisfies the necessary condition for
the realization of a clique]. If not, we take into account the
densest hypothetical substructure that could be realized using
the degree sequence of G. In Eq. (A4) the first term is the
number of links in the network, the second term is the number
of links in a clique of size n1, while the third term is the
number of links in the subgraph with n1 nodes and maximum

degree sum [i.e., with degree sequence DH
G (n1)]:

mu
11 = min

⎛
⎝m,

(
n1

2

)
,

⎡
⎢⎢⎢

∑
i∈DH

G (n1 )

min(di, n1 − 1)

2

⎤
⎥⎥⎥
⎞
⎠, (A4)

In the second upper bound mu
10, we check if G can contain a

complete bipartite subgraph with partitions size n1 and n0. If
not, we consider a set of stars made of the first n1 elements
of DG if n1 < n0 or made of the first n0 elements of DG if
n0 < n1. In Eq. (A5) the first term is the number of links in the
network, the second term is the number of links in a bipartite
graph with partitions of size n1 and n0, while the third term
is the minimum between the number of m10 deriving from
the degree partition DH

G (n1) ∪ DT
G(n0) and the number of m10

deriving from the degree partition DH
G (n0) ∪ DT

G(n1):

mu
10 = min

⎡
⎣m, n1n0, min

⎛
⎝ ∑

i∈DH
G (n1 )

min(di, n0),
∑

i∈DH
G (n0 )

min(di, n1)

⎞
⎠
⎤
⎦. (A5)

The first lower bound ml
11 considers the partition DT

G(n1)
and the minimum residual degree of its elements (when >0),
which is exploited in order to realize the minimum m11. Since
most real networks are sparse, this bound is effective mainly
in the case of unbalanced partitions and of dense networks.
The second term of Eq. (A38) counts the minimum number
of links among the n1 nodes in the graph deriving from the
partition DH

G (n0) ∪ DT
G(n1), i.e., the amount of m11 which is

realizable from the residual degree of the partition DT
G(n1):

ml
11 = max

(
0,

⌊∑
i∈DT

G(n1 ) di −∑
i∈DH

G (n0 ) di

2

⌋)
. (A6)

The second lower bound ml
10 considers that the lower m10

occurs in the case of a bisected network (i.e., a network with
two separated components). Thus, if the degree sum in DT

G(n1)
overcomes the degree sum in a clique of size n1, then we
guarantee the presence of some m10. Considering that any
connected realization with n1 �= {0, n} has at least one m10,
the second term of Eq. (A39) counts the minimum number of
links between the n1 and n0 in the case the n1 are arranged into
a clique:

ml
10 =

{
0, if n1 = 0, n,

max
(
1;
∑

i∈DT
G(n1 ) di − n1(n1 − 1)

)
, if 0 < n1 < n.

(A7)
The bounds to m00 can be obtained using the same rationale
as that of m11.

a. Improvements to lower bounds in the metadata-graph space

The lower bound to the intrapartition links is ml
11. It can be

initially improved by correcting the term
∑

i∈DH
G (n0 ) di. This

term keeps the bound low especially in the case of unbal-
anced partitions and in the case of heavy tailed and sparse
networks [i.e., when the degree sum of DH

G (n0) has a high
value because of the presence of hubs]. Knowing the size of

the two partitions, the second term in ml
11 can be written as∑

i∈DH
G (n0 ) min(di, n1).

Indeed, any node in n0, despite its degree, can be connected
at most to other n1 nodes in a different partition. Consequently,
the residual degree of the nodes in DT

G(n1) can be exploited for
the realization of m11.

Therefore,

ml
11 = max

(
0,

⌊∑
i∈DT

G(n1 ) di −∑
i∈DH

G (n0 ) min(di, n1)

2

⌋)
.

(A8)

The bound to the interpartition links is ml
10. The first extension

consists of making the bound symmetrical by adding the term∑
i∈DT

G(n0 ) di − n0(n0 − 1) and in noticing that such a term can
be written in a more efficient way as

∑
i∈DT

G(n0 ) max[0, di −
(n0 − 1)]. As shown in [14], the current bound works better
in the case of dense networks since, when n1 becomes larger,
the nodes in DT

G(n1) may still have a residual degree which is
higher than the degree of the nodes in a clique of size n1 [i.e.,
certain elements in DT

G(n1) have degree greater than n1 − 1].
Conversely, if the considered network is relatively sparse, we
may not be able to provide a lower bound to m10 which is
greater than zero even for very low values of n1.

Therefore, given that n1 + n0 = n, when n1 increases we
should also try to bound m10 by supposing a realization in
the tail of DG that involves n0 nodes. Thus, the symmetrical
version of ml

10 comprises the term
∑

i∈DT
G(n0 ) di − n0(n0 − 1).

An additional improvement, possibly more appropriate in
the case of heavy tailed and sparse degree sequences, de-
rives from the following consideration: called DG(n1) and
DG(n0) two arbitrary partitions of DG, any element in DG(n1)
[DG(n0)] can be connected at most to other n1 − 1 (n0 − 1)
ones in the same partition. Thus, any element in DG(n1)
[DG(n0)] can be involved in at least di − (n1 − 1) [di − (n0 −
1)] intrapartition links.
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Given a certain arbitrary partition of DG = DG(n1) ∪
DG(n0), the minimum amount of m10 that can be
realized is m10 = 1

2 (
∑

i∈DG(n1 ) di − (n1 − 1) +∑
j∈DG(n0 ) d j

− (n0 − 1)).
In the case n1 > n0, the following relation holds:

1
2 (
∑

i∈DG(n1 ) di − (n1 − 1) +∑
j∈DG(n0 ) d j − (n0 − 1)) �

1
2 (
∑

i∈DG(n1 ) di − (n1 − 1) +∑
j∈DG(n0 ) d j − (n1 − 1)).

The second term of such a relation assumes, in order to
provide a lower bound to m10, that any element of DG has
the lowest possible residual degree for the realization of m10.
Obviously the quantity di − (n1 − 1) has to be greater than
0 for each i and the second term of the previous inequality
represents the lowest possible sum of residual degrees of any
arbitrary partition, in the case n1 > n0. Thus, the previous re-
lation can be written as 1

2

∑n
i=1 max[0, di − (n1 − 1)]. Finally,

ml
10 can be expressed as:

if n1 = 0, n

ml
10 = 0, (A9)

if n1 > n0

ml
10 = max

⎛
⎝1;

∑
i∈DT

G(n1 )

max[0, di − (n1 − 1)];
∑

i∈DT
G(n0 )

max[0, di − (n0 − 1)];

⌊
1

2

n∑
i=1

max[0, di − (n1 − 1)]

⌋⎞⎠, (A10)

if n1 � n0

ml
10 = max

⎛
⎝1;

∑
i∈DT

G (n1 )

max[0, di − (n1 − 1)];
∑

i∈DT
G(n0 )

max[0, di − (n0 − 1)];

⌊
1

2

n∑
i=1

max[0, di − (n0 − 1)]

⌋⎞⎠. (A11)

Or in a more compact way when n1 �= 0, n:

ml
10 = max

⎛
⎝1;

∑
i∈DT

G(n1 )

max[0, di − (n1 − 1)];
∑

i∈DT
G(n0 )

max[0, di − (n0 − 1)];

⌊
1

2

n∑
i=1

max{0, di − [max(n1, n0) − 1]}
⌋⎞⎠.

(A12)

3. Bounding the edge counts in the graph space

We consider the graph space into which the degree se-
quence DG and the vector of binary node metadata are both
fixed. In such a case we say that DG = DG(n1) ∪ DG(n0)
which represents the current partition of the considered degree
sequence, given the node metadata assignment. Therefore, we

can exploit the combinatorial bounds of the metadata-graph
space in order to bound the different edge counts in the graph
space. The rationale behind the bounds remain the same as
well as the formulas (presented in Appendixes A 2 and A 2 a)
which can be, however, contracted as we cannot leverage,
within the graph space, the different ways of partitioning DG.
Therefore, the bounds in the graph space can be written as

mu
11 = min

(
m,

(
n1

2

)
,

⌈ ∑
i∈DG(n1 )

min(di, n1 − 1)

2

⌉)
, (A13)

mu
10 = min

[
m, n1n0, min

( ∑
i∈DG(n1 )

min(di, n0),
∑

i∈DG(n0 )

min(di, n1)

)]
, (A14)

ml
11 = max

(
0,

⌊∑
i∈DG(n1 ) di −∑

i∈DG(n0 ) min(di, n1)

2

⌋)
, (A15)

ml
10 = max

(
1;

∑
i∈DG(n1 )

max[0, di − (n1 − 1)];
∑

i∈DG(n0 )

max[0, di − (n0 − 1)]

)
. (A16)

4. Swap of node metadata

In order to approximate the maximum and minimum val-
ues of binary assortativity in the metadata space, we use
the following heuristic procedure which provides admissible
solutions to the graph bisection problem also in the case of
unbalanced partitions.

(1) Take into account the network, the metadata vector c
and compute rcurrent.

(2) Take into account two randomly chosen entries of c,
called ci and c j , such that ci = 1 and c j = 0 (or vice versa).

(3) Swap the values of ci and c j and compute rswap.
In the case of assortativity maximization:
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if rswap > rcurrent, then the switch is accepted and rcurrent =
rswap;

if rswap � rcurrent, then with probability p = 0.001 the swap
is accepted, and rcurrent = rswap.

In the case of assortativity minimization:
if rswap < rcurrent, then the swap is accepted and rcurrent =

rswap;
if rswap � rcurrent, then with probability p the swap is ac-

cepted, and rcurrent = rswap.
Steps 2 and 3 of the procedure are iterated several times

and different repetitions are performed.

5. Freeman’s segregation

By using the notation of [35], segregation S can be ex-
pressed starting from the relation

s =
{
E(e∗) − e∗, if and only if E(e∗) � e∗,
0, otherwise. (A17)

In such a formula e∗ is the number of cross-class edges (i.e.,
m10) and E(e∗) is the first moment of e∗. Therefore, S is
expressed as S = s/E(e∗) ∈ [0, 1]. Any value of S may be
interpreted simply as the ratio of the number of missing cross-
class links to the expected number of such links. By using the
notation that we adopted throughout the paper, we can express
the number of cross-class links as have e∗ = m10. Thus

S = E(m10) − m10

E(m10)
. (A18)

A value of S = 1 indicates that there are no cross-class links
and that segregation is complete. Whenever ml

10 �= 0 we can
guarantee the absence of complete segregation for any real-
ization of the considered DG.

6. Dataset description

a. Facebook100

The Facebook100 dataset [25] contains an anonymized
snapshot of the friendship connections among 1 208 316 users
affiliated with the first 100 colleges admitted to Facebook.
The dataset contains a total of 93 969 074 friendship links
between users of the same college. Each node has a set of
discrete-valued social attributes: status {undergraduate, grad-
uate student, summer student, faculty, staff, alumni}, dorm,
major, gender {male, female}, and graduation year.

b. Wolf dominance

The network represents a set of dominance relationships
among a captive family of wolves [27]. Common signs of
dominance among wolves are two low postures (namely low
and low-on-back) and two behaviors (namely body tail wag
and lick mouth [37]). In such a network a node corresponds
to a wolf and a link exists if a wolf exhibited a low posture
to another one. The network with n = 16 nodes and m = 148
links is provided with metadata such as age and gender.

7. Bounds for scale-free networks

Given a certain degree sequence DG with n elements that
follows a power-law distribution with exponent γ , the fraction

of nodes holding a certain degree value d is p(d ) = ad−γ

where a is chosen so that the sum over p(d ) equals 1.
In order to obtain the number of nodes n from the sum of

p(d ) we simply multiply the parameter a by n thus

dmax∑
dmin

ad−γ n = an
dmax∑
dmin

d−γ = b
dmax∑
dmin

d−γ = n, (A19)

where dmin and dmax are, respectively, the minimum and
maximum degree values in DG. Such a summation can be
approximated by

b
∫ dmax

dmin

x−γ dx. (A20)

In this continuous model of a power-law distribution, where
the limit of large networks is usually considered, it is a reason-
able approximation to assume that the degree values extend to
infinity:

b
∫ +∞

dmin

x−γ dx ≈ n, (A21)

in other words

b
d1−γ

min

γ − 1
≈ n. (A22)

The maximum degree is determined by

b
∫ +∞

dmax

x−γ dx ≈ 1, (A23)

since only one node has degree � dmax, in other words

b
d1−γ

max

γ − 1
≈ 1. (A24)

By comparison, we find the classic relation:

dmax ≈ dminn1/(γ−1). (A25)

Given a certain value of n1, we can write an approximation of
the tail (head) of the degree sequence DT

G(n1) [DH
G (n1)], using

arguments similar to those presented above. In order to write
such an approximation we need to identify the degree value
d that, fixed n1, guarantees us to consider n1 elements of the
degree sequence. Accordingly, the degree value d will be the
variable of our equation.

The degree value d up to which we need to cut the de-
gree sequence in order to obtain an approximation of DT

G(n1)
(made up of n1 not necessarily different degree values) can be
obtained via the following equation:

b
∫ d

dmin

x−γ dx ≈ n1 (A26)

and thus

b
∫ +∞

d
x−γ dx ≈ n − n1 = n0, (A27)

in other words

b
d1−γ

γ − 1
≈ n0. (A28)
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Comparing with the above we find

d ≈ dmin(n/n0)1/(γ−1). (A29)

The total number of edges is m = ∑
i di/2 which can be

approximated by

m ≈ b

2

∫ +∞

dmin

xx−γ dx = b

2

d2−γ

min

2 − γ
= n

2
dmin

γ − 1

γ − 2
. (A30)

This allows us to find the sum of all n1 bottom degrees [i.e.,
of the elements in DT

G(n1)]:

∑
i∈DT

G(n1 )

di = b
∫ d

dmin

xx−γ dx = 2m − b
∫ +∞

d
xx−γ dx, (A31)

which is

2m − n0d
γ − 1

γ − 2

that, using Eq. (A29), can be turned into

ndmin
γ − 1

γ − 2
− n0dmin(n/n0)1/(γ−1) γ − 1

γ − 2
,

which can be simplified to

ndmin
γ − 1

γ − 2
[1 − (n0/n)(γ−2)/(γ−1)]

and finally to

∑
i∈DT

G(n1 )

di = 2m[1 − (n0/n)(γ−2)/(γ−1)].

It follows that the sum of top degrees [i.e., of the elements in
DH

G (n0)] is

DH
G (n0) = 2m(n0/n)(γ−2)/(γ−1).

For example, for γ = 3 and n0 = n1 = n/2,

∑
i∈DT

G(n1 )

di ≈ 2m(1 −
√

2/2).

Finally, DT
G(n0) and DH

G (n1) can be obtained analogously by
means of the equality n0 = n − n1. In summary∑

i∈DT
G(n1 ) di = 2m[1 − (n0/n)(γ−2)/(γ−1)],∑

i∈DH
G (n0 ) di = 2m(n0/n)(γ−2)/(γ−1),∑

i∈DT
G(n0 ) di = 2m[1 − (n1/n)(γ−2)/(γ−1)],∑

i∈DH
G (n1 ) di = 2m(n1/n)(γ−2)/(γ−1).
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FIG. 8. Upper and lower bounds to binary assortativity for a
scale-free network with γ = 3.

Since we computed the degree sums of different portions
of the degree sequence analytically, the bounds to the edge
counts can be simplified to

mu
11 = min

[(
n1

2

)
, m(n1/n)(γ−2)/(γ−1)

]
, (A32)

mu
10 = min[n1n0, m(n0/n)(γ−2)/(γ−1)] (A33)

(assuming n0 � n1),

ml
11 = max{0, m[1 − 2(n0/n)(γ−2)/(γ−1)]}, (A34)

ml
10 = max{1; 2m[1 − 2(n0/n)(γ−2)/(γ−1)] − n1(n1 − 1)}

(A35)

(assuming nontrivial case 0 < n1 < n).
If we assume that n0/n is a constant fraction α0 (not 0 and

not 1) while n → ∞ and dmin and γ remain constant, we can
further simplify

mu
11 = mα

(γ−2)/(γ−1)
1 , (A36)

mu
10 = mα

(γ−2)/(γ−1)
0 (A37)

(assuming α0 � α1),

ml
11 = m max(0, 1 − 2α

(γ−2)/(γ−1)
0 ), (A38)

ml
10 = 1. (A39)

Using the bounds to the edge counts we can compute upper
and lower bounds to binary assortativity as in Eqs. (15) and
(21). As an example we consider a scale-free degree distri-
bution with γ = 3 for which we obtain the bounds reported
in Fig. 8. While the upper bound in uninformative, the lower
bound becomes tighter in the presence of a small minority
(n0 � n1 and n1 � n0) allowing room only for slightly dis-
assortative configurations.
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