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But we observe signals on nodes and no links!
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|dentify assets whose prices vary
coherently to better manage risk
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Motivating examples...

|dentify regions of the brain to
predict the onset of psychosis and
learn about the ageing of the brain

|dentify climate zones to better
understand factors affecting our climate

|dentify assets whose prices vary
coherently to better manage risk




Is there really a network?



Is there really a network?
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We don’t have to directly observe something to believe it is true



Common practise

« Galculate pairwise correlations between signals (e.g. Pearson’s).
* Threshold (and Binarize) the matrix of correlations.
« Perform community detection on this (notional) network



Problems

* This procedure commonly invokes point-estimates at each step
— Does not capture the uncertainty of individual links



Problems

* This procedure commonly invokes point-estimates at each step
— Does not capture the uncertainty of individual links

* Unclear how to include missing data.

* No intrinsic/clear notion of the right number of communities.



The signals we observe from many nodes are driven by a few latent factors

BG GROUP




The signals we observe from many nodes are driven by a few latent factors
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Factor loading A.>

Notion of a community is: a group of nodes that influenced similarly by the latent factors



Observed time series Latent factor Factor loadings
time series
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Prior precision (A\)
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US cities climate data
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What happened to the network?

« Since we skip explicit interpretation of A our inference framework is
basically a Bayesian (time-series) clustering.

* One can re-interpret AAT as a network, or interpret distances
between time-series in the latent-space as links in a network, but
this is optional.



EDGES?




Advertisement

The Winter Workshop on Complex Systemns is a one-week workshop where young
researchers from all over the world gather together for discussing about

complexity science and engaging into novel research projects.

Applications now open!
http://wwes2019.org/

February 4-8™ 2019
Lakopane, Poland



http://wwcs2019.org/

In collaboration with...

Come to my other talks:

“Graph-based semi-supervised learning for complex
networks”
Wed 16:30 Room 10

“Multiscale mixing patterns in networks”
Thur 12:10 Room 3

Till Nick Renaud
Hoffmann Jones Lambiotte

Preprint available: arXiv:1808.06079 Contact:

leto.peel@uclouvain.be

Y @PiratePeel
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